

Mobile Market Trends: The Customer Experience

Google

amazon.com°

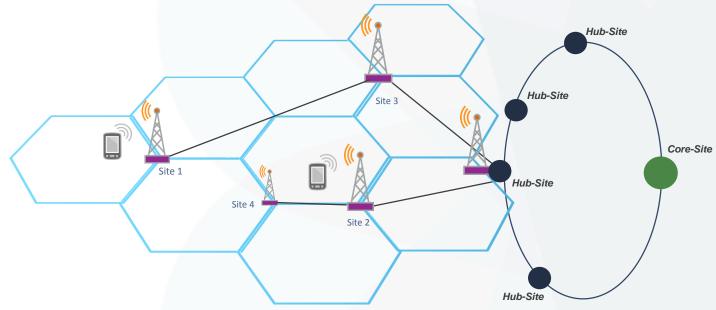
NETFLIX

Trusted Reliability

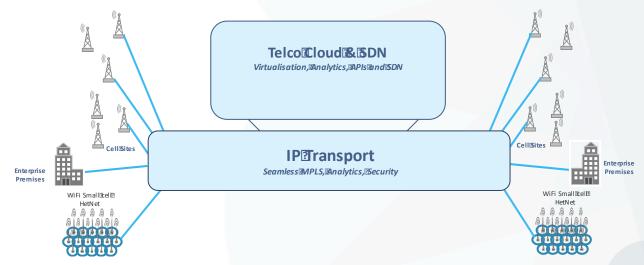
Pervasive Coverage

Seamlessly Converged

Application Optimized


- The Smartphone and Tablet, combined with 3G HSPA and 4G have driven the proliferation of applications for business, lifestyle and pleasure
- Availability of those applications and the network latency impacting them is key to the end user experience which in turn impacts Churn and Market Share for mobile operators
- OTT Content drives the need for mobile broadcast and higher speed access

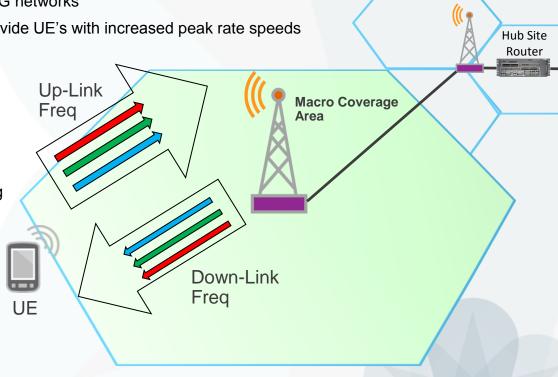
Mobile Backhaul Environment: Moving To Extensive 4G & Multi-Service Access

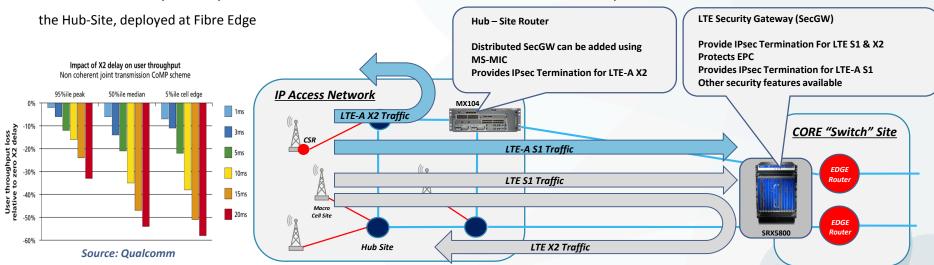


- Mixed 2G, 3G HSPA, LTE, LTE-A Coverage
- Macro Sites Used as Hub-Sites for surrounding Small-Cells
- Hub-Sites Aggregate 10-20 Macro and associated Small Cells
- All IP, MPLS Access Network
- For 4G, IPsec Tunnels from Base Station (eNode B) to Core Site, terminated on SecGW
- All data traffic is currently backhauled to the core cost and latency impact

JUNIPER.

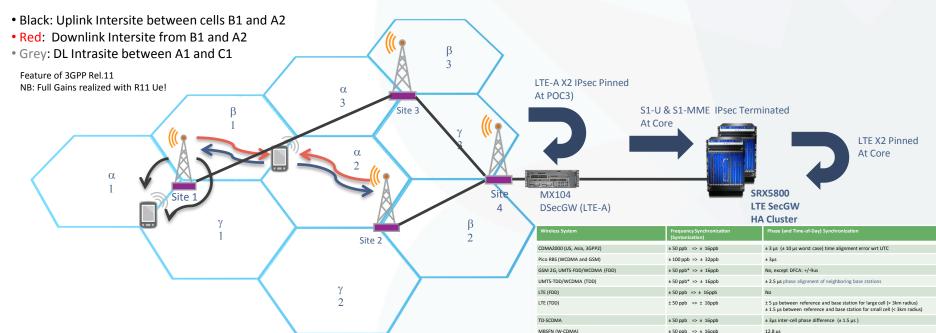
Mobile 2020: "All IP Open Cloud"


- Ubiquitous 4G LTE & LTE-A Drive Growth in Backhaul, Core and Peering Bandwidth and require Security
 - Seamless MPLS Access, Core and International
- NFV Telco Cloud (e.g. EPC, IMS, SBC, Cloud CPE)
- 5G brings latency sensitive apps to the mobile RAN with MEC for improved customer experience.
- Extensive small cell capacity layer, indoor and outdoor
- GPS can't time all the cells but timing (Phase & Freq) is needed to achieve throughput requirements


"I Have LTE-A & No Timing Problem": LTE-Advanced: Carrier Aggregation

- LTE-A is already with us and deployed in many 4G networks
- Carrier Aggregation is the simplest method to provide UE's with increased peak rate speeds
- Using 3GPP R8 & 9 compatible carriers
 - Component Carriers are aggregated
 - Can be 1.4, 3, 5, 10 or 20MHz (Max)
 - Maximum 5 Component carriers = 100MHz
 - Can be different in UL & DL
- The eNode B requires only LTE Frequency timing

Mobile Backhaul Environment: The Move To LTE-A And On To 5G


- LTE-A Features such as Coordinated Multi-Point (CoMP) and Enhanced Inter-cell Interference Coordination, (eICIC) become available as s/w upgrades to 4G base stations from 2016
- These features drive close coordination between cell sites and place requirements on the backhaul network:
 - **Timing**: Frequency & Phase: Frequency16ppB, Phase +/- 0.5μSecs
 - Distributed Security: X2 Handover Interface requires a latency of <3-5ms
- Accurate timing with many vendors current and installed backhaul solutions is a major change as accuracy relies on hardware
- The Core LTE Security Gateway remains at the Core site to terminate the S1 IPsec tunnels and to protect the EPC, Distributed LTE-A SecGW For X2, on

JUNIPE

LTE-Advanced: Coordinated Multipoint

Accurate Timing (Phase & Frequency) & Low Latency Are Key

MBSFN (LTE eMBMS Rel. 9)

LTE-A CoMP DL - intra-eNodeB

LTE-A CoMP DL = inter-eNodeB CS/CB & DCS

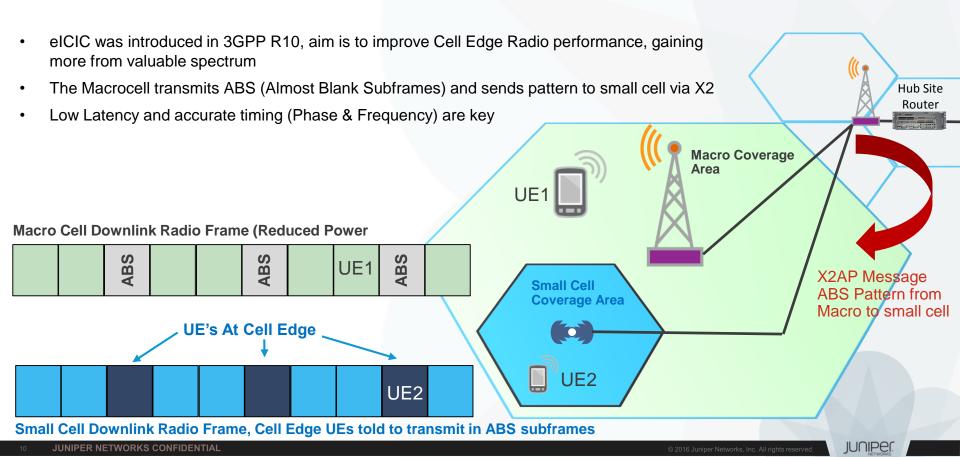
LTE-A eICIC (Inter-Cell Interference Coordination)

LTE-A Rel. 9 OTDOA Observed Time Difference Of Arrival ±50 ppb => ± 16ppb

- LTE Requires Frequency Timing: 50ppB
- LTE-A (CoMP & elCIC) Require Frequency & Phase:
 - Frequency16ppB, Phase +/- 0.5µSecs

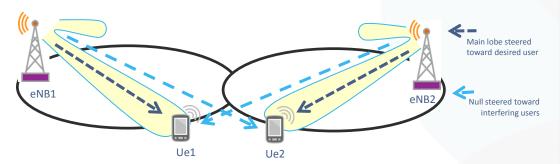
< ± 1.5 us inter-cell phase difference, with respect to a common time reference.

±50 ppb => ± 16ppb

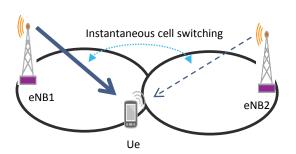

±50 ppb => ± 16ppb

±50 ppb => ± 16ppb

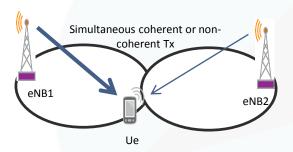
± 50 ppb => ± 16ppb


elCIC: enhanced Inter-Cell Interference Coordination

Accurate Timing (Phase & Frequency) Are Key elc IC Feature of 3GPP Rel.10


Down-Link CoMP

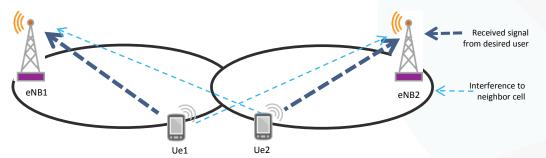
1. Coordinated Scheduling/Coordinated Beamforming (CS-CB)



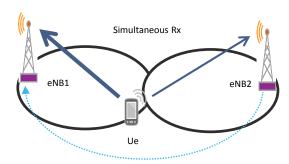
DL CoMP Requirements	Coordinated Scheduling/ Beamforming (CS/CB)	Joint Processing (JP)	
		Dynamic Cell/ TX Point Selection (DCS)	Joint Transmission (JT)
Data availability	At one TX point only	At cells/ TX points in CoMP set	At cells/ TX points in CoMP set
Data transmission	Always from serving cell	Coordinated transmission from single TX point at a time	Coherent transmission from multiple TX points at a time
Transport data	Control messages	HARQ block/ IQ data + Control messages	HARQ block/ IQ data + Control messages
Transport latency*	~< 5 ms	< 1ms*	< 1 ms*
Transport capacity	Only control requirements	HARQ block/ IQ data: 0.1 Gbps/ 1 Gbps per 20 MHz per antenna	HARQ block/ IQ data: 0.1 Gbps/ 1 Gbps per 20 MHz per antenna
Inter TX point synchronization	RAN4 inter-BS: 0.05 ppm frequency TDD: <3 µs timing accuracy	RAN4 inter-BS: 0.05 ppm frequency TDD: <3 µs timing accuracy	0.005 ppm frequency 0.3 – 0.5 μ s timing accuracy
Channel State Info (CSI)	Multiple CSI process using different IMR	Multiple CSI process each corresponding to one Cell/TP	Multiple CSI process each corresponding to one cell/TP with common IMR

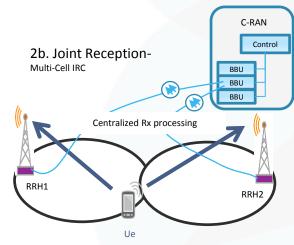
2a. Dynamic Cell Selection

2b.Joint Transmission



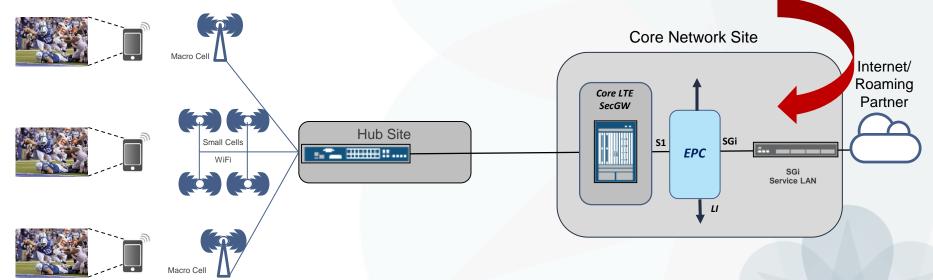
Down-Link LTE-A CoMP Requirements



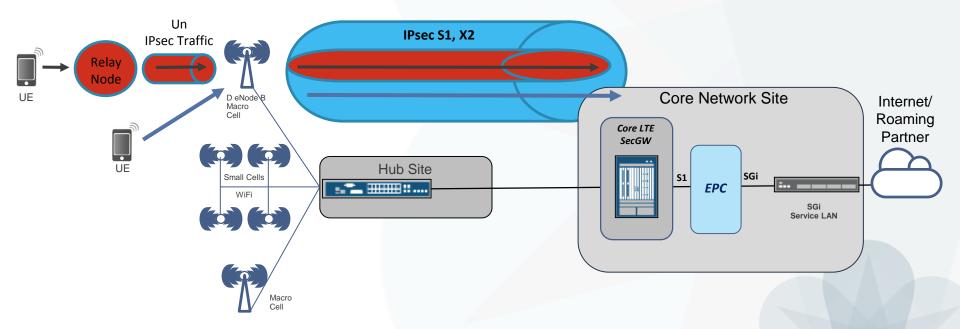

Up-Link CoMP

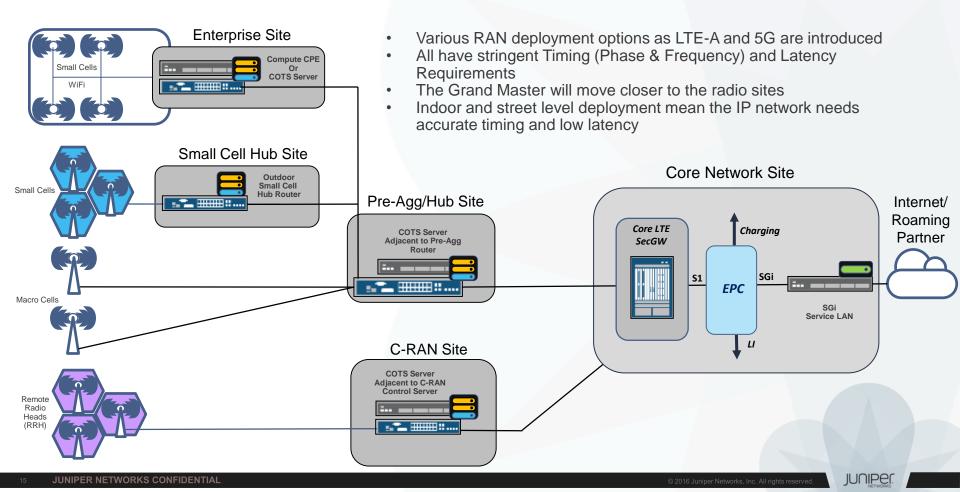
1. Coordinated Scheduling

UL CoMP Requirements	Coordinated Scheduling (CS)	Joint Reception (JR)	
		Distributed Interference Cancelation (DIC)	Multi-cell IRC
Data collection	One RX point at a time	Multiple cells/ RX points at a time	Multiple cells/ RX points at a time
Data reception	Always in serving cell	Distributed reception	Centralized reception
Transport data	Control messages	Hard-bit Transport Block + Control messages	I/Q data + Control messages
Signaling transport latency	=< 4 ms	=< 4 ms	=< 4 ms
Received data transport latency	n/a	=< 1 ms preferred 10-20 ms being investigated	=< 1 ms preferred 10-20 ms being investigated
Transport capacity	Only control requirements	0.1 Gbps/ 20 MHz	1 Gbps/ 20 MHz/ antenna
Inter RX point synchronization	RAN4 inter-BS: 0.05 ppm frequency	RAN4 inter-BS: 0.05 ppm frequency	RAN4 inter-BS: 0.05 ppm frequency UE TA at all RX points within fraction of Cyclic Prefix: < 2 µs


Up-Link LTE-A CoMP Requirements

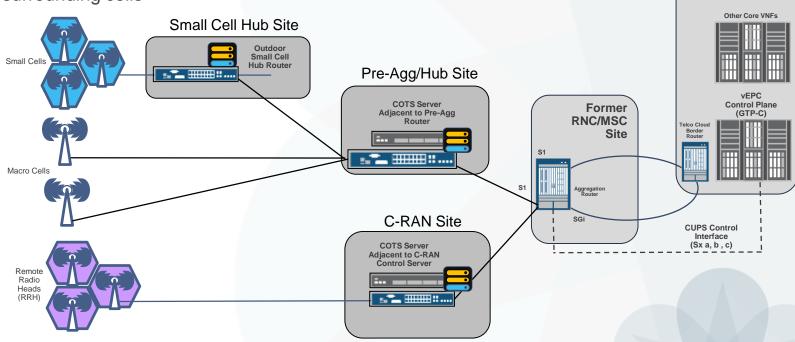
eMBMS: Broadcast Requires Tight Timing


- Some content is consumed by many at the same time
- Mobile broadcast is the efficient method: eMBMS
- eMBMS Requires Accurate Timing: Frequency16ppB, Phase +/- 1.5μSecs
- Current, purely frequency timing based networks cannot support this service without addressing timing distribution



LTE Relay Node: Further Complicates RAN Timing, Security & Latency

- LTE-A Relay Nodes are LTE-A Radio Repeaters
- The UE sees them as a base station (eNode B) but the eNode B sees them as a device (UE)
- Relay Node transmits to "Donor" or D eNode B via to Un interface (radio)
- Hence, an IPsec "tunnel in tunnel" is created to allow the traffic to pass to the core network SecGW
- Whilst they are designed for rural coverage improvement, as LTE-A elCIC and in particular CoMP is rolled out, timing and X2 handover optimisation will be an issue.


Evolving RAN Network: Timing & Latency Sensitive

Evolving The RAN To 5G: Timing & Latency Sensitive

- Various RAN deployment options as LTE-A and 5G are introduced, including C/V-RAN
- All have stringent Timing (Phase & Frequency) and Latency Requirements
- The Grand Master will move closer to the radio sites
- Indoor / Street level deployment means the IP network needs accurate timing and low latency to serve the surrounding cells

NFV Telco

Cloud Site

JUNIPER NETWORKS CONFIDENTIAL © 2016 Juniper Networks, Inc. All rights reserved.

Mobile Backhaul Solutions: Juniper's Core, Hub & Cell-Site Solutions Support LTE-A Timing Requirements

ACX500 Cell Site & Small-Cell Hub Router

- PoE For Powering Microwave Connectivity
- Security Features: 802.1x and 802.1ae MacSec
- · Outdoor and Indoor Versions:
 - Outdoor IP65 Compliant Housing
- Zero Touch Provisioning Through Space Connectivity Services Director

ACX500 Macro-Cell Rack (Indoor)

ACX500 Outdoor IP65 Compliant

MX104: Hub Site AGGREGATION

ETSI-300 Deep

Compact, Redundant & Future proof:

- Based on successful Juniper Trio PFE
- 80G full-duplex
- Hardware redundancy (control plane)
- 600 Watt PSUs; AC and DC inputs
- Wide operating temp range -40C to +65C
- Forced cooling with side-to-side airflow; FRU'able fan tray
- MIC Services Cards
 - Distributed LTE-A SecGW for Hub site X2 LTE-A Handover

Modular Design:

- 4x10GE SFP+ LAN/WAN uplink ports (built-in)
- 4 MIC Slots -~20G BW per slot

